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Abstract 

Correlation equations far s t a t i s t i c a l l y  homogeneous f lmtua t ions  of 

veloci ty  and temperature a t  two points i n  an inf in i te ,  uniform sheas flow 

are derived w i t h  allowance f o r  a temperature gradient i n  an a rb i t r a ry  

direct ion i n  a plane normal t o  the flow direction. The i n i t i a l l y  excited 

isotropic turbulence decaya and becomes anisotropic with t i m e .  

Fourier transformations are introduced, t he  resul t ing spectral  equations 

a re  solved fo r  the case of weak turbulence wherein t r i p l e  correlat ions 

Af'ter 

a re  neglected congared with d o d l e  correlations. Spectra of turbulent 

heat t ransfer  and temperature fluctuation are calculated. For large 

nondimensional velocity gradients, the thermal eddy d i f fus iv i ty  i n  the 

direct ion n o m 1  t o  the velocity gradient i s  much larger  than that i n  the  

direct ion of the +elocity gradient. The thermal eddy d i f fus iv i ty  i n  the  

velocity-gradient direction tends t o  equal the momentum eddy di f fus iv i ty  

a t  large velocity gradients. 

NOMENCLATURE 

a transverse velocity gradient, t i U l / b 2  

a+* dimensiofiess transverse velocity gradient, (t  - to)dUl/dxZ 

b transverse temperature gradient, aY/ax2 
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transverse temperature gradient, aT/ax3 

constant that depends on i n i t i a l  conditions 

ifistantaneous pressure 

distance from P t o  PI 

distancg vector from P t o  P' 
-P component of r 

average temperature 

instantaneous temperature 

t ransfer  term fo r  temperature fluctuations obtained by inte-  

grating K1 & j / 3 K 2  i n  eq. (25)  over the angular coordinates 

of a Gave number sphere 

time 

reference t i m e  

an average velocity component 

instantaneous velocity component 

fluctuating par t  of velocity component defined by eq. (4) 

=ace camdinate 

thermal d i f fus iv i ty  
- - 

spectrum functions of 7u2 or  7u3 defined by eq. ( 2 9 )  

Fourier transform. of TuJi defined by eq. (15) 

Fourier transform of ui7' defined by eq. (16)  

spectrum function of T~ defined by eq. (30) 

- 
- 
- 
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- 
6 Fourier transform of m1 defined by eq. (17)  

equals 1 fo r  i = j and equals o fo r  i # j “3 
E eddy d i f fua iv i ty  fo r  momentum transfer defined by eq. (34) 

eddy d i f fus iv i ty  f o r  heat t ransfer  6efh& 55- eq. (54) ‘h 

5 Fourier transform of Q! defined by eq. (19) 

/ - .  . 
- 
- f ’ Fourier transform of p ~ !  defined by eq. ( 2 0 )  

8 spherical  coordinate i n  wave-number space 

K wave number 

K)c dimensionless wave number, vl/’(t - to)’/‘ K 
--+ 
K wave number vector 

coqonent of wave number vector i K 

V kinematic viscosity 

5 dummy variable 

P density 

7 fluctuating part of temperature defined by eq, (3) 

cp spherical coordinate i n  wave number apace 

qij Fourier tranaform of uiu; defined by eq, (18) 

Sub sc r ip t s  : 

- 

i,3,k VaLUes equaling 1, 2, o r  3 and designating coordinate directions 

( 2 ) , ( 3 )  scalar quant i t ies  that arise from the effects of aT/axz or 

aT/axg 

Super BC r i p t  s : 

1 r e fe r s  t o  point PI 

average value - 
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INTRODUCTION 

Phenomenological theories of turbulence, which a re  reviewed i n  [l], 

I n  a have recently receive@ support from s t a t i s t i c a l  turbulence theory. 

uniform shear flow with decaying t.w3??1ence, Deisslar [ 2 ]  fa-aid a tenliency 

of the r a t i o  of eddy d i f fus iv i t i e s  fo r  heat and momentum t o  approach unity 

f o r  conditions tha t  correspond roughly t o  steady channel flow. 

ments of t h i s  nature do not form a basis fo r  supslanting phenomenological. 

theories,  which a re  the only pract ical  means of organizing quantit ies of 

experimental evidence. Rather, s t a t i s t i c a l  theories fur ther  the under- 

standing of turbulence and my, i n  some instances, point the way fo r  new 

extensions of the phenomenological theories when no experimental evidence 

i s  available. 

Develop- 

A uniform shear f l o w  i s  described by a constant gradient of mean 

velocity i n  a direct ion normal t o  the f l o w  direction. 

'present. Transient turbulence, which i s  spa t ia l ly  homogeneous, i s  i n i -  

t i a l l y  established, say by a wire screen, and the turbulence is  l a t e r  

studied when it is weak enough for  the  t r i p l e  correlations of velocity 

or temperature fluctuations t o  be neglected. 

No boundaries are  

Early s t a t i s t i c a l  investigations of turbulent heat t ransfer  were con- 

cerned w i t h  the isotropic turbulence tha t  arises i n  the absence of a mean 

velocity gradient [3],[4]. 

l o c i t y  correlations were first presented by Deissler [ 5 ) .  

studies of heat transfer,  pressure fluctuations, and velocity correla- 

t ions  were accoql ished by him [ 21, [ 61, and Fox [ 71. 

For shear flows, numerical values of the ve- 

Additional 

I n  the present 
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ef for t ,  these studies are extended t o  include the e f f ec t s  of a tempera- 

ture gradient with components not only i n  the direct ion of the  velocity 

gradient ( the subject of [ 2 ] )  but a lso i n  the direction normal t o  both 

the velocity vector and the velocity gmdimL 

of vectors occurs in  a tube flow w i t h  circumferential variations i n  heat 

transfer. In the folluwing, temperature gradient e f f ec t s  a re  shown t o  

be separable into components; consequently, the r e su l t s  of the present 

investigation supplement those of [ 21 

A si;iiilar arrangement 

Several features of stronger turbulence a re  present i n  weak turbu- 

l en t  shear flows, as sham i n  [ 53. 

sizes  i s  present, as is  production of turbulence by the act ion of the 

mean velocity gradient. The decay of velocity and temperature fluctua- 

t i ons  proceeds, huwever, despite the production e f fec ts  since they are  

not strong enough t o  of fse t  dissipation effects. 

ANALYTICAL FOFUWLATION 

The thermal energy equations at  two points P and P1 can be 

Transfer between eddies of different  

written, fo r  constant properties, as 

and 

N ry 

where uk and T are  the instantaneous velocity components and tempera- 

ture. Cartesian components of the position vector x are designated by + 
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the subscript k, which takes on the values 1, 2, and 3. A repeated sub- 

sc r ip t  on a term implies a s u m t i o n  of three terms corresponding t o  the 

three values of the  subscript. Synibols t and a represent time and 

therm1 diffuaivit jr .  A 6ivLsion of instantaneous quant i t ies  i n to  steady 

and fluctuating components is  accarnpliahed by setting 
N 

T = T + . r  (3) 

and 

N 

uk = uk + U r  (4) 

These relat ions are substituted in to  Eq. (l), and the resul t ing equa- 

t i o n  i s  averaged over a large number of systems tha t  a re  m r o s c o p i c a l l y  

the same but have random fluctuating quant i t ies  t ha t  are spa t ia l ly  homo- 

geneous i n  a s t a t i s t i c a l  sense (ensenible average). The averaged equa- 

t ions  are subtracted from the unaveraged ones with the resu l t  

where the overbar indicates an averaged quantity. The average of a f lue-  

tuat ing comgonent i s  necessarily zero. A t  point PI, the equation corre- 

sponding t o  Eq. (5) can be visualized from Eqs. (1) and (2) .  I n  a similar 

manner, the Navier-Stokes equations were t reated i n  [5] t o  yield (at 

point p 1 ) 

- 
An equation for TU! i s  obtained by multiplying Eq. (5) and u t  and 

Eq. (6)  by 7, adding, and averaging the resul t ing equation. I n  the 
J 3 
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i n t e re s t  of brevity, the turbulence i s  assumed weak a t  t h i s  point i n  the  

analysis so that the  t r i p l e  correlations tha t  arise are  neglected com- 

pared with the  double correlations. 

tiornrs is z f f e r e n t  f r ~ a  that in [z:. 
None of the  omitted tr iple correla- 

m e  avei-ageii. equation is 

where t h e  independence of f luctuating quant i t ies  at  one point from the  

posit ion of the  other point ha6 been u t i l i zed  i n  placing the  quantities 

inside the spacial  derivative signs. I n  homogeneous turbulence, 

a single steady velocity component U1 and one velocity gradient 

dUl/h2, a simplifying r e l a t ion  ex i s t s  

. . 

which reduces Eq. ( 7 )  t o  

where a1 = 1 f o r  j = 1 and o f o r  j + 1. 3 
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A sFmilar procedure applied t o  the equations corresponding t o  

Eqs. (5) and ( 6 )  a t  PI and P yields 

a v  l a -  (a + v )  
P ar, ar,, - - p's' + 

and, likewise, Eq. (5) a t  P and the corresponding equation a t  P' yield 

An additional equation i s  obtained by applying a/axt t o  Eq. ( 6 )  and 3 
noting the continuity equation &$/ax! = 0. This produces J 

Multiplying Eq. ( 1 2 )  by z, averaging, and introducing r j  = x; - X j  give 

Similarly, 

Fourier transforms are  introduced: 
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where 1?1 = K i s  the Wave rimer, which can be interpreted a s  the recip- 

rocal of an eddy size. 

The Fourier transforms of Eqs. ( 9 )  and (13) are 

and 

1 K l K j  d U 1  - - i K . !  = 
P J  K 

where dUl/dxz and aT/dxk are  constants. Eq. (22)  can be subtracted 

from Eq. ( 2 1 )  thereby eliminating from the equations. A similar 

Procedure applied t o  Eqs. (10) and (14) yields  an equation of the 

form f o r  yi. I n  the present study, the case of r = 0, aT/ax2 # 0, and 
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aT/axg 0 i s  considered so  tha t  = yj. Symbols a = dUl/dx2, 

b = ?iT/ax2, and 

become 

c = aT/8x3 are  introduced so t ha t  the f i n a l  equations 

and 

where EQ. (25) i s  the  Fourier transform of Fq. (11). 

SOLUTION OF SPECTRAL EQUATIONS 

Isotropic turbulence and zero temperature fluctuations are assumed 

as in i t i a l  conditions, &gp-essions for  922 and 933 t ha t  s a t i s fy  

these i n i t i a l  conditions have been reported i n  [5] and 171. 

i s  

The l a t t e r  
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2 + K~ + a K  (t - toll2 + K i )  c 1 

I 3 

f K2 2 
3 2  
4 + -  

K 

where Jo and to are constants that  depend on the i n i t i a l  condftions. 

~ 2 3  = ( ~ 3 2 9  although nonzero, was found t o  In [ 71, the solution f o r  
- 

produce a zero value of u u which was consistent w i t h  the lack of a 

velocity gradient i n  the x2,x3-plane. Eqs. (23) and (24) of th i s  inves- 

t iga t ion  have been solved f o r  the effects  of 

terms containing 'pz2 and cp33 ( the l i nea r i ty  of the equations permits 

the addition of solutions). Zero contributions t o  7u2 and 7u3 are  

obtained from the d i rec t  e f fec ts  of ~ ~ 2 3 ;  however, an indirect  e f fec t  t ha t  

does contribute t o  7u3 enters Eq. ( 2 4 )  i n  the f i f t h  term. This contri- 

bution can be traced t o  the expression of the pressure e f fec t  

of y2 i n  Eq, (22) .  The remaining portion of y2 that  contributes t o  

2 3' 

923 by omission of the 

- - 

- 

i n  terms 
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- 
7u2 
the following solutions to Eqs. (24) and ( 2 5 ) ,  only those expressions 

that contribute to TU or T~ are sham. 

is the same as t4at reported in [Z]; it is not repeated herein. In 

- - 
3 - 

For Pr = 1, the Fourier transTom of 7u3 is 

X 

+ 

For Pr 1, y3 takes the form 
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These expressions f o r  r2 and y3 verify the  f a c t  t ha t  the  turbu- 
- - 

l en t  heat-transfer cowonents -ru2 and 'ru3 a r i s e  f r o m  temperature 

gradient components i n  the respective directions a / a x 2  and a/&,. 
- 

The transform of the  portion of 7' that arises from aT/ax3 is, 

f o r  Pr = 1, 
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2 

5 c2 ( K Z  + K + a K  (t - tog2 + ~ 2 )  

12s a ~ l ( ~ 1  + K3) 

0 , 1  L-2 1 3 
2 2 2  2 2 8(3) = 

The other portion 6(2)  tha t  is a resul t  of &T/axz i s  the same as that 

reported i n  [z].  

The convenience of interpreting functions of K instead of functions 

of 2 was pointed out by Batchelor [SI. Following h i s  sugge.stion, the 

a ~ d  w3 are accomplished i n  two steps, integrations that lead t o  

the f i r s t  of which involves integrating over the angular coordinates of a 

- - 2 
7 3 )  

wave-nuniber sphere: 

and 

- 
A display of I'3 and n ( 3 )  shows how the contributions t o  7u3 and 

5 are  dis t r ibuted among wave numbers or eddy sizes, since 
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' 0  ' 0  

COMPUTED SPECTRA - - 
Numerically calculated spectra of m3 and T T ~ )  are  displayed i n  

dimensionless form i n  Figs. 1 and 2 for  several values of the dimension- 

l e s s  velocity gradient a*. Since t i m e  enters  a l l  the dimensionless 

representations, the curves f o r  various a* show the effect  of velocity 

gradient on the spectra at  any given time while the turbulence decays. 

Dashed curves correspond t o  those i n  [2] because of separabili ty of 

solutions. For large Prandtlnumbers, the spectra of 7u3 i n  Fig. 1 

peak a t  large w a 6  numbers ( s m a l l  eddy s izes) .  

- 

- 
Isotropic spectra (a* = 0) i n  Fig. 1 are  the same f o r  7u3 and 

- 9, as previously reported i n  141. 

spectra of 7u3 and 7u2 i s  sFmilar t o  that of the respective groduction 

terms cVS3 and bvZ2 i n  Eqs. (23) and (24); 922 decreases and s h i f t s  

toward lower wave numbers as the velocity gradient increases, whereas 

increases markedly with l i t t l e  sh i f t  (see Fig. 5, ref. [SI, and Fig. 2, 

Tha behavior of the peaks of the 
- - 

933 

ref. [7]) .  
7 

A s h i f t  t o  higher wave numbers i n  the spectra of T~ with increas- 

ing velocity gradient i s  evident i n  Fig. 2 both a t  the peak and a t  moder- 

ate values on the high-wave-number side, resul t ing i n  an elongation of 

the spectra toward high wave numbers. This spectral  change i s  evidently 

due t o  a t ransfer  of ac t iv i ty  from low wave numbers (large eddies) t o  
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high wave numbers (small eddies) by the act ion of the second term i n  

Eq. ( 2 5 ) ,  which i s  known as the transfer term. The name stems from the 

Fourier transform re la t ion  

which becomes, for  r t 0, 
Am 

Similar r e su l t s  can be obtained from corresponding terms i n  Eqs. (23) and 

(24). 

@/at, but they do a l t e r  spectral  distributions. 

- - 
Thus, these terms contribute nothing to &u3/at, &uZ/&t, and 

The integration shown i n  Eq. (33) can be accomplished i n  two s teps  

by f i r s t  integrating over the angular coordinates of a Wave-number sphere 

and then integrating over the wave numbers. O f  course, the last step 

yields  a t r i v i a l  resu l t ,  but the f irst  r e su l t  i s  a spectral  t ransfer  

function, For Sr = 1, the integrated t ransfer  term corresponding t o  

T~ 

L 

is  shown i n  Fig. 3. Most of the t ransfer  of ac t iv i ty  is  out of the 

low-wave-number spectrum and in to  the high-wave-number spectrum, but 

some reverse t ransfer  occurs a t  low w a v e  numbers and l o w  velocity gra- 

dients. Deissler [ 2 ]  a t t r ibuted th i s  ac t iv i ty  t ransfer  t o  a vortex- 

stretching process, which might also involve vortex compression a t  low 

velocity gradients and thereby produce some reverse transfer. 



- 17 - 

PRODUCTION, ’I”ET#CCURE FLUCTUA!I‘ION, AND CONDUCTION SPECTRA 

Production of temperature fluctuations by the  t h i r d  and fourth terms 

i n  Eq. (25)  i s  interpreted as a r e su l t  of t he  ac t ion  of t he  temperature 

gradient on the  respective turbulent heat transfer, TU and TU 

Conduction or  diss ipat ion i n  the l a s t  term reduces loca l  temperature 

_= _c 

3‘ 2 

peaks by molecular heat conduction away from hot spots. Production and 

conduction terms ’can be integrated over‘ a wave-number sphere t o  yield 

spectral  dis t r ibut ions i n  the same manner as t h a t  used t o  obtain the 

temperature f luctuat ion spectra of -c2 i n  Fig. 2. After normlizat ion 
-c 

of t he  peak values t o  unity, a l l  three spectra are shown i n  Fig. 4 for  

Pr = 1 Actually, t w o  s e t s  of 

spectra corresponding t o  the separate e f f ec t s  of aT/ax, and a!r/ax, 
(from [ 2 ] )  are  displayed i n  Fig. 4. 

three spectra a re  close together, as those i n  Fig. 4 of [ Z ] .  

and a high veloci ty  gradient (a* = 50). 

For low veloci ty  gradients, t he  

For a large 

veloci ty  gradient, production, fluctuation, and conduction spectra i n  

the  present Fig. 4 peak a t  successively greater wave numbers. 

A l l  these e f f ec t s  take place as the  turbulence and the  turbulent 

temperature f luctuat ions decay. 

eddies (low wave numbers), transferred t o  the  small eddies (high wave num- 

Fluctuations are produced i n  the la rge  

bers ) ,  and f i n a l l y  dissipated by molecular conduction. 

TEDmm!rm-moCITY CO€mELATION coEFF1c1m 

Corrsin [ 3 ]  introduced a temperature-velocity correlat ion coeff ic ient  

that  i s  modified herein t o  account for  the separate e f f ec t s  of 

and &/ax3. Two dimensionless coefficients are ut i l ized,  

aT/ax, 
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of the  curves i n  Figs. 1 and 2 and those i n  Fig. 2 [ 71, a l l  f o r  Pr = 1. 

Fig. 5 i s  a display of both correlations as a function of veloci ty  gra- 

dient,  s t a r t i ng  with the  perfect  correlation value of - l t h a t  was ob- 

ta ined i n  [4] f o r  isotropic  turbulence (a* = 0) .  One correlat ion coef- 

achieves an  asymptotic value of -0.9 whereas the  3 f i c i e n t  

other, by decreasing monotonically, shows a continuous l o s s  of correla- 

t i o n  between the temperature and velocity f luctuat ions as a* increases. 

EDDY DIFFUSIVITIES 

The eddy d i f f u s i v i t i e s  of momentum and heat ( i n  the  x2- and x3- 

direct ions)  are defined by 

(34) 
u1'2 z'2 z'3 E=-dUl /dx2J 'h(2) = w, x2 "3) = - ar/ax, 

Ratios of eddy d i f f u s i v i t i e s  play a large part i n  phenomenological 

theories  of steady turbulent flows. A unity value of Eh(Z)/E produces 

the bes t  agreement between experiment and analysis f o r  Prandtl n m e r s  

that  a re  not too low [l]. 

Deissler obtained a s i m i l a r  tendency of 

values of 

I n  the t ransient  turbulence analysis of [ Z ] ,  

Eh(z)/E toward unity a t  high 

a* which were found t o  correspond roughly t o  steady turbulent 

flows. Recent phenomenological analyses [ 91 , 1101 of circumferential 
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variat ions of heat t ransfer  i n  round tubes a re  based on an assumption of 

equal eddy d i f fus iv i t i e s  i n  the radial  and circumferential directions; 

that is, Eh(2) Eh(3) i n  the present notation. 

A dimensionless eddy diffusivi ty  v s j z ( t  - to)'/' E h ( 3 ) / ~ o  can be 

obtained by integrating %he curves in  Fig. 1. Integration of the curves 

i n  [SI fo r  

i s  displayed i n  Fig. 6 along with Eh(2)/E from [Z]. Although the 

curves for the two r a t io s  are  not widely separated a t  low velocity gra- 

E i s  a l so  necessary f o r  the calculation of ch 3 )  /E, which 

dients,  which are-near the isotropic case (a* = 0) ,  large velocity gra- 

dients  produce values of 

greater than values of 

E h ( 3 ) / E  that  a re  two orders of magnitude 

Eh(Z)/Ej except for  low Prandtl nunibers. 

can be compared with %3> and 'h(2) The re la t ive  magnitudes of 

the magnitudes of the turbulent velocity fluctuations (o r  turbulent 

energy components) i n  the two directions u3 and u2. Refs. [5] and -2 - 
2 

[7] show tha t  u$ proceeds rapidly but asymptotically toward zero a t  
c 

2 large velocity gradients, whereas u3 decreases slowly from the average 

of the energy comBbnents 

Likewise from physical reasoning, it is  clear t ha t  the thermal eddy dif- 

- 
uiui/3, which increases w i t h  velocity gradient. 

fu s iv i ty  i s  greater i n  the direction of greater velocity fluctuations. - 
The existence of greater 1.123 than u$ has long been suspected 

[ l l ]  and, i n  recent times, has been ver i f ied experimentally i n  tube and 

channel flow [12], [13], and i n  boundary layers [14]. I n  fact ,  the 

ordering of a l l  three components of turbulent energy, from largest  t o  

smallest, i s  the same 
- C L  

uf, ug, u$ i n  those measurements and i n  the 



- 20 - 

present theory [7]  a t  large velocity gradients. 

features  of boundary layers and tube flow are  dependent on the presence 

of b oundar i e  s . 

Apparently, not a l l  

Deissler [2] compared the transient analysis with a steady f l o w  i n  a 

boundary layer or  tube by taking 

spectral  curves and 0.3 6 as a representative length, where 6 i s  the 

KZverage - 1 from turbulent energy 

boundary Layer thickness o r  tube radius. I f  U i s  an average velocity 

and dUl/d.x2 N U/F, then a* i s  of the order of 0.1 m/v. This im-  

p l i e s  t h a t  

of 10 

E h(3)/E i s  much larger  than E h ( Z ) / E  fo r  Reynolds numbers 

4 and over tha t  a r e  encountered i n  practice. 

The r e su l t s  of the present analysis, together w i t h  existing velocity- 

f luctuat ion measurements, provide no sup-port f o r  an assungtion of equal 

thermal eddy d i f fus iv i t i e s  i n  the  rad ia l  and circumferential directions 

(Eh(2) = Eh(3)) i n  turbulent tube flaw. 

‘h(3) > ‘h(2) 

Instead, the re la t ion  

i s  indicated. 
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(a) Prandtl number, 1. 

Figure 1. - Dimensionless spectra of 7% and ~ u 2  for uniform transverse 
velocity and temperature gradients and for various Parandtl numbers. 
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(b) Prandtl number, 0.01. 

Figure 1. - Continued. Dimensionless spectra of TT~ and TT for uni- 
form transverse velocity and temperature gradients and for various Prandtl 
numbers. 
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(c) Prandtl number, 10. 

Figure 1. - Concluded. Dimensionless spectra of 7T3 and ru2 for uni- 
form transverse velocity and temperature gradients and for various Prandtl 
numbers. 
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Figure 2. - Dimensionless spectra of * and T2  for uniform transverse velocity and temperature 
gradients. Prandtl number, 1. (3) 
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Figure 3. - Dimensionless spectra of transfer terms in  spectral equations for T2 and @ . Prandtl 
number, 1. ( 3) (a 
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Figure 4. - Comparison of production, temperature fluctuation, and conduction spectra from spectral - -  
equations for t2 and S2 at large velocity gradient. Prandtl number, 1. a* - (t - to) dUl/dx2 - 50. 

~ C u w e s  normalized to same height.) 
( 3) (2) 
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Figure 6. - Ratio of eddy diffusivity for heat transfer to that for momentum transfer 
as a fundion of dimensionless velocity gradient. 
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